Visual Object Tracking by Using Multiple Random Walkers
نویسندگان
چکیده
منابع مشابه
Semi-supervised Video Object Segmentation Using Multiple Random Walkers
A semi-supervised video object segmentation algorithm using multiple random walkers (MRW) is proposed in this work. We develop an initial probability estimation scheme that minimizes an objective function to roughly separate the foreground from the background. Then, we simulate MRW by employing the foreground and background agents. During the MRW process, we update restart distributions using a...
متن کاملOcclusion Reasoning for Multiple Object Visual Tracking
Occlusion reasoning for visual object tracking in uncontrolled environments is a challenging problem. It becomes significantly more difficult when dense groups of indistinguishable objects are present in the scene that cause frequent inter-object interactions and occlusions. We present several practical solutions that tackle the inter-object occlusions for video surveillance applications. In pa...
متن کاملVisual Learning in Multiple-Object Tracking
BACKGROUND Tracking moving objects in space is important for the maintenance of spatiotemporal continuity in everyday visual tasks. In the laboratory, this ability is tested using the Multiple Object Tracking (MOT) task, where participants track a subset of moving objects with attention over an extended period of time. The ability to track multiple objects with attention is severely limited. Re...
متن کاملMultiple Object Tracking Using Local Motion Patterns
This paper presents an algorithm for multiple-object tracking without using object detection. We concentrate on creating long-term trajectories for unknown moving objects by using a model-free tracking algorithm. Each individual object is tracked by modeling the temporal relationship between sequentially occurring local motion patterns. The algorithm is based on shape and motion descriptors of ...
متن کاملObject Tracking Using Multiple Neuromorphic Vision Sensors
In this paper we show how a combination of multiple neuromorphic vision sensors can achieve the same higher level visual processing tasks as carried out by a conventional vision system. We process the multiple neuromorphic sensory signals with a standard auto-regression method in order to fuse the sensory signals and to achieve higher level vision processing tasks at a very high update rate. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Broadcast Engineering
سال: 2016
ISSN: 1226-7953
DOI: 10.5909/jbe.2016.21.6.913